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ABSTRACT 

The three-dimensional exterior problem (where the potential distribution is outside 
of the boundary configuration) is converted to an equivalent interior problem; while 
leaving the region of interest unchanged. The important axially symmetric problem 
is treated as a special case. Finite-difference approximations appropriate for computer 
solution of the modified exterior problem are proposed for both the two-dimensional 
(x-y coordinate) and the axially symmetric (r-z coordinate) cases. The accuracy of these 
finite-difference approximations is evaluated by numerical solution of exterior problems 
with known analytical solutions. 

1. INTRODUCTION 

In many practical engineering design problems where a solution to Poisson’s 
equation is desired, the potential distribution of interest is outside of the boundary 
configuration, and extends to infinity. A simple example of such a problem is the 
determination of the magnetic field about an isolated bar magnet. Before a finite- 
difference solution to such a problem can be obtained, the exterior problem must 
be converted to a problem with a finite domain, in order to avoid an infinite number 
of grid points. 

Several authors have developed schemes for approximating an exterior problem 
by a finite problem. Matheson and Luenberger [l] enclose the region of interest by 
an equipotential box which is large enough to have little effect on the potential 
in that region. Ryan [2], using a resistance analog to solve the difference equations, 
obtains a resistor termination network for use at the boundary of the region of 
interest. Boothroyd, Cherry, and Makar [3] use conformal mapping to convert 
the two-dimensional exterior problem for Laplace’s equation into an exactly 
equivalent interior problem, while leaving the region of interest unchanged. 

This paper extends the results of Boothroyd, Cherry, and Makar to the solution 
of Poisson’s equation in three dimensions and to the very practical axially-sym- 
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metric case (r-z coordinates). In addition, finite-difference approximations appro- 
priate for computer solution of the modified exterior problem are proposed for 
both x-y and r-z coordinates. The accuracy of these approximations is evaluated 
by numerical solution of exterior problems with known analytical solutions. 

2. THE EXTERIOR-INTERIOR TRANSFORMATION IN Two DIMENSIONS 

Although rectangular coordinates seem the natural choice for representation 
of two-dimensional problems, polar coordinates will be more appropriate for this 
derivation. Let u(r, 0) denote the potential distribution of the exterior problem; 
that is, u(r, 0) satisfies Poisson’s equation everywhere except where boundary 
conditions are specified. Assume that u(r, 0) is bounded near infinity, and that the 
region of interest is totally contained within the disk r < a [see Fig. l(a)]. Define 
the transformed potential u(r, 0) by inversion in the circle of radius a, 

u(r, e) = u(a2/r, e). (1) 

The inside of the circle is mapped outside, and vice versa; the origin for v(r, 0) 
corresponds to the point infinity for u(r, @[see Fig. l(b)]. 

BOUNDARIES WHICH DEFINE 
THE EXTERIOR PROBLEM 

(a) (b) 
FIG. 1. Inversion in the circle. 

We will show that u(r, 0) can also satisfy Poisson’s equation. Defining /? = a2/r, 
and letting subscripts denote partial derivatives, 

V2u(r, 6 = Ur, 0) + 5 t)+(r, e) + f G&, 0) 

a2 
=w u $,e +!..!I, +, 

( > r ar ( ) e +f$+($-,e) 
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= J$ vzu(p, e). 

By definition, 

vwt e) = - i 4, 0 (2) 

where u(j3, 0) is the two-dimensional charge density1 and E is a constant of the 
material. Therefore, 

vucr, e) = - if u ($ , 8). (3) 

When the position of the charge distribution is inverted in the circle, the charge 
density must be multiplied by a4/r4, where r is the new radius. This requirement 
guarantees that the total charge in a region before transformation equals the 
charge in the inversion of that region after transformation. The weighting of the 
charge distribution is all that is required in order that u(r, 0) satisfy Poisson’s 
equation. 

There is one apparent difficulty. For r = 0, the right side of Eq. (3) need not 
exist. It has been shown that an isolated singularity of a bounded harmonic 
function is removable. See Kellogg [4]. If the charge density of the original problem 
is zero in some neighborhood of infinity, then u(r, t?) satisfies Laplace’s equation 
in a neighborhood of r = 0, and the singularity is removable. We impose no 
practical restriction by requiring that the charge density within some neighborhood 
of infinity be zero. Since the potential distribution near infinity is of no interest, 
even a point charge at infinity can be approximated arbitrarily closely by a charge 
distribution which satisfies this assumption. 

Notice that the information contained in u(r, f3) for r t a is equivalent to that 
contained in v(r, 8) for r < a. The original problem is completely characterized 
by the potential distributions v(r, 0) and u(r, 8) for r < a; the latter is the un- 
modified potential in the region of interest. These facts motivate us to construct a 
new problem, defined on a finite domain, from the functions u(r, 0) and u(r, 6) in 
the interiors of the disk-shaped regions. Hereinafter, u(r, 0) and u(r, 8) for r > a 
will be of no interest. 

1 Although the notation and terminology are those associated with electrostatics, the results 
apply to Other steady-state fields as well, 
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It is easily verified from Eq. (1) that, at r = a, 

4% 0) = u(a, 0 g v(a, e> = - g u(u, e>. r (4) 

These identities define complementary boundary conditions at the edges of the 
two disks. The new problem, with finite domain, is obtained as follows. The 
disk-shaped region in which u(r, 8) is defined is placed behind the disk-shaped 
region in which u(r, 0) is defined. The two disks are connected along the circle 
r = a (see Fig. 2). From Eqs. (4) we see that both the potential and its gradient 
(the flux density) are continuous across the circular interface; Poisson’s equation is 
satisfied on the complete “double disk” by the potential consisting of u(r, 0) on the 
front disk and ~(r, 8) on the rear disk. In essence, the infinite region of the original 
problem-that part outside r = u-has been mapped into a finite region-the 
“back” of the disk-shaped region of interest-without changing the conditions at 
the interface r = a. 

REAR DISK 

v(r,8) 
EXTERIOR INTERFACE 

r=o 

FRONT DISK 

u(r,tv -w 

BOUNDARIES Of 
ORIGINAL PROBLEM 

v(0;8) =‘ub.e)--- - - (f IG. I (01) 
- - 

FIG. 2. A portion of the two disks showing their interface at r = a. 

The fact is well known that the voltage and current in a thin uniform sheet of 
resistive material correspond to potential and flux. This analogy is often exploited 
in the experimental determination of potential distributions. The mapping de- 
scribed above may be interpreted as follows. Suppose that both sides (and the edges) 
of a thin nonconducting disk are coated with a uniform resistive material, and 
certain boundary conditions are fixed on one side of the disk. Then, the potential 
distribution on that side of the disk is the same as it would be if that side of the 
disk were part of an infinite resistive sheet. Thus, an exterior problem for Poisson’s 
equation can be represented by an equivalent “double-disk” interior problem 
without changing the potential distribution in the region of interest [3]. 
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3. THE EXTERIOR-INTERIOR TRANSFORMATION IN THREE DIMENSIONS 

For the derivation of an exterior-interior transformation which is applicable in 
three dimensions, it is convenient to use spherical coordinates. The notation is 
indicated in Figure 3. 

.~._ 

X r 

FIG. 3. Relationship between common coordinate systems. 

Let u(p, 8, 4) be the potential distribution, and assume that the region of interest 
is contained within the sphere p < a. Define u(p, 8, 4) by a modified inversion in 
the sphere,2 

By repeating the steps used to obtain Eq. (3), we find that 

1 
p2 sin2 + ‘a’ 

(6) 

Thus, v satisfies Poisson’s equation if the charge density is multiplied by a5rp5 
(where p is the new radius) when its position id transformed in the sphere. 

Note that the potential distributions u(p, 8, C#J) and Z&I, B, 4) ‘defined on p < a 
completely characterize the original problem. After comparison with the two- 
dimensional case, one is motivated to attempt construction of a new problem by 
joining (at p = a) the interiors of the two spheres where the potentials u and tr are 
defined-lin an abstract sense, placing the spheres back to back-and ignoring the 
potentials for p > a. 

* This inversion, called the Kelvin transformation, is the only three-dimensional transformation 
which preserves Laplace’s equation. See Kellogg [4]. 



368 DORNY 

From Eq. (5) it is easily verified that at p = a, 

+J, 0, 4) = 44 4 $4 
and 

(7) 

It is clear from Eq. (8) that the boundary conditions at the edges of the two spheres 
do not complement each other as they did in the two-dimensional case. Interpreted 
from a physical standpoint,3 Eq. (8) requires that a surface charge density 
- (44 ~(a, 4 $1, h h w ic is proportional to the potential, be added at the interface 
in order that the two spheres be joined at p = a. That is, such a charge density 
distributed on the sphere p = a provides a reason for the discontinuity in the 
derivative of the potential normal to the sphere. With the addition of such a 
charge distribution, a three-dimensional exterior problem can be converted to an 
equivalent “double sphere” interior problem for Poisson’s equation while leaving 
the region of interest unchanged. 

4. AXIAL SYMMETRY 

Physical problems are typically three-dimensional and often cannot be adequately 
represented in two-dimensional rectangular coordinates. Yet, practical difficulties 
make finite-difference solution of three-dimensional problems unlikely at the 
present time. Fortunately, a large percentage of these problems are nearly axially 
symmetric and can be represented in two-dimensional r-z coordinates (see Fig. 3). 
The three-dimensional exterior-interior transformation is valuable primarily 
because it applies in the r-z coordinate case. 

Axial symmetry implies that the potential does not vary with 0, but only with 
r and z (or the equivalent, p and 4). The transformation of Eq. (5) reduces to a 
transformation from the outside to the inside of a half disk (see Fig. 4). The 
explicit mention of B in Eq. (5) merely emphasizes the three-dimensional nature of 
the problem. The exterior problem, described in two-dimensional p-$ coordinates 
on the half plane, is replaced by a “double half-disk” interior problem. The infinite 
part of the original problem is mapped onto the back of the half-disk region of 
interest, analogous to the true two-dimensional case. Poisson’s equation is satis- 

3 The component of flux density normal to the sphere is defined as E au/ap [5]. 
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fied (in p-4 or r-z coordinates) over each half disk. However, a charge density 
- (C/U) ~(a, 4) is distributed on the semicircle p = a in order to match conditions 
at this interface. 

FIG. 4. Inversion with axial symmetry. 

5. FINITE-DIFFERENCE REPRESENTATION FOR x-y COORDINATES 

The double-disk representation of the two-dimensional exterior problem has a 
finite domain; therefore, it is suitable for finite-difference approximation. The 
transformation of the exterior problem to an interior problem has added one more 
boundary-the exterior interface-to the original boundaries of the problem. In 
this section a finite-difference approximation to Poisson’s equation in the neigh- 
borhood of the exterior interface is derived under the assumption of a uniform 
square grid of spacing h. This approximation is appropriate for a general purpose 
computer program which uses standard finite-difference approximations in X-JJ 
coordinates for the other types of boundary conditions [6]-[8]. 

The edge of each disk (Fig. 2) is perturbed in order to fit a square grid (see Fig. 5). 
This perturbation simplifies the estimation of derivatives required by the finite- 
difference method. In Fig. 6 the perturbed interface is drawn, for clarity, as a 
piecewise linear curve. At the perturbed interface, both the potential and its normal 
derivative are continuous. 

ORIGINAL DISK EDGE 

PERTURBED DISK EDGE 

POTENTIAL EXTENDED 
INTO THIS REGION 

FIG. 5. Intersections of the original circular edge and the perturbed edge of one disk. The 
front and rear disks are perturbed identically. 
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In order to simplify the following convergence analysis, assume that the charge 
density is zero near the edge of each disk. Note that the perturbed edge of each 
disk occasionally intersects its original circular edge. Assume that the potential 
distributions of the perturbed double-disk problem (call them U and V) can be 
extended by analytie- continuation across the perturbed edges of each disk far 
enough to include the regions between intersections of-the-two curves. See Fig. 5. 
It is clear that as ,the grid is refined, the extended potential tJ,at a point on the 
original edge of the front disk and the extended potential V at the corresponding 
point on the rear disk both approach the potential at a common point on the 
perturbed interface. Thus, in the limit, the first condition of Eqs. (4j is satisfied. 

Gauss’s Flux theorem, which is equivalent to Poisson’s equation, states (in three 
dimensions) 

for each closed surface S, where @ is the potential, @, is the derivative of Q, in the 
direction of the outward normal to S, E is a constant of the material, and Q is the 
total charge enclosed by S (see Reference [4]). Physically, Eq. (9) says that the total 
flux leaving a region equals the total charge enclosed in that region In the x-y 
coordinate case, where @ does not vary with z, Eq. (9) reduces to 

- s AD,, dL = Q (10) 
L 

for each closed curve L; that is, flux does not flow in the z direction. 
Letting the path L of Eq. (10) be the boundary of the region between two 

consecutive’intersections of the original and perturbed edges of each disk, and 
recalling that Q = 0 in this region, we find 

and 

j U,dL + j U,,dL = 0 
pert. orig. 

j I’, dL + j V, dL = 0 
pert. orig. 

Along the original circular edges, U, ‘= aU/ar and V, = a Vpr. At the perturbed 
interface, U, = -V, . Therefore, 

i 
$dL = - j V,dL= j U,dL = - $ :dL. (11) 

wig. pert. pert. orig. 
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Thus, between intersections the integrated effect of the second condition of (4) is 
correct. As the grid is refined, 

Sortg. dL -+ -G 

at corresponding points on the original circular edges; in the limit, the normal 
derivative boundary condition of Eqs. (4) is satisfied. 

FIG. 6. 

A DOUBLE POLYGON DOUBLE POLYGON 

ORIGINAL EXTERIOR INTERFACE ORIGINAL EXTERIOR INTERFACE 

PERTURBED EXTERIOR PERTURBED EXTERIOR 

PLANE OF REAR DISK PLANE OF REAR DISK 

Typical configuration of grid points at the interface between the Typical configuration of grid points at the interface between the two disks. 

The front and rear disks of the perturbed exterior problem are represented by 
identical networks of grid points. Figure 6 shows the ‘manner in which the grid- 
point approximations to the two disks are joined at the perturbed interface. The 
point 0 in that figure represents the “double” polygonal region which extends 
half way to the neighboring grid points. Let Qo represent the total charge contained 
in this region. The grid points which are neighbors to point 0 are labeled according 
to the compass, those on the rear disk being distinguished by the extra letter R. 

The integration method of deriving the difference equations consists in approxi- 
mating Eq. (9) [or Eq. (lo)] on the region represented by each grid point [6], [8]. 
Derivation of the finite-difference approximation corresponding to point 0 of 
Fig. 6 indicates, by example, how Poisson’s equation may be represented in the 
neighborhood of the perturbed interface of the double disk. Derivatives of the 
potential normal to the boundary of the double polygon are estimated by potential 
differences, and are approximately constant over each straight line segment of the 
polygon. Thus, the flux crossing the south boundary Ls of the polygon on the front 
disk is approximated by 

Z.Z -4% - @cl), (12) 
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where GS and CD0 are potentials at the points S and 0, respectively. The total flux 
leaving the double polygon is estimated by adding together terms similar to 
Eq. (12) for each segment of the boundary of the polygon. This procedure leads 
to the following approximation to Eq. (lO).4 

-EE(@s - @o) - E(@SR - c&J - E(@W - @(J 

- mm - @o> - l E - @o> = eo (13) 
Note that the configuration of the double polygon represented by the point 0 is 
determined by the configuration of the perturbed interface. Equation (13) can be 
rewritten 

(14) 

making explicit the manner in which the potential at point 0 depends upon the 
potentials at the neighboring points. 

6. TWO-DII~ENSIONAL EXAMPLE 

The exterior problem shown in Fig. 7, representing a pair of oppositely charged 
cylinders, has a known analytical solution [5]. The error which is introduced by 
the steps described in this paper; viz., the exterior-interior mapping, perturbation 
of the exterior interface, and finite-difference approximation of the modified 
exterior problem, is analyzed by actual solution of this example. Because of 
symmetry in the configuration, the northeast quadrant of the problem is sufficient 
to define this solution. 

@=-IO00 
G Y 

t 
I-x 

>NTI-S~MMETRY LINE 

’ 3 ~JNIT~ 

FIG. 7. A pair of oppositely ,.chargec! circles (cylinders). The potential satisfies Va@ = 0. 

4 Dorny [6] shows that approximations of this type lead to a matrix of difference equations 
which is symmetric, diagonally dominant, and possesses property (A). 
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Figure 8 shows the perturbed front disk of the modified exterior problem along 
with the grid-point representation of the exterior interface and the fixed potential 
circle. (The rest of the grid points are omitted from the figure for clarity.) If the 
grid points on the rear disk are mapped back onto the infinite plane, their spacing 
in the r direction is found to vary inversely with r. Since the gradient of the poten- 
tial in any practical problem approaches zero as r increases, one intuitively seeks 
this type of grid (where the spacing approaches infinity as r -+ co) in order to 
obtain uniform discretization error over the whole plane. The grid points should be 
spaced most closely near the region of interest where the gradient is highest. Thus, 
the error is expected to be low, even near the exterior interface. 

c 

7’ 
c 

POINT 0 OF FIG. 6 

ANTI -SYMMETRY LINE 
(4 10) 

1 20 GRID SPACES ,p= 

FIG. 8. Front disk of the modified exterior problem with its grid-point representation. 

The accuracy of the exterior approximation is increased by an increase in a/h, 
the ratio of the radius of the circle of inversion to the distance between grid points. 
The error due to the grid point representation of the exterior interface can be 
controlled independently of the error due to the grid point representation of the 
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boundaries in the region of interest, since the latter depends only upon h. The 
constants selected for the problem are as follows: the grid spacing h = 1 unit; the 
radius of the exterior interface a = 20 units; E = 1; the charge density a(~, v) = 0 
everywhere (except of course on the fixed potential boundary). 

The fixed potential boundary (CD = 1000) is represented by fixing the potential 
at nearby grid points (small dots in Fig. 8) to the correct analytical solution. At 
several grid points on the perturbed exterior interface, the configuration is as in 
Fig. 6 (compare with Fig. 8). Therefore, the difference equation used to determine 
the potential at these points is Eq. (14) with Q. = 0. By noting the relationship 
between Fig. 6 and Eq. (14) it becomes clear how to write the difference equations 
for other points on the interface by inspection of their neighboring grid-point 
configurations.5 For example, the potentials at the grid points on the 45” segment 
of the interface (Fig. 8) are determined by 

(15) 

where Qo = 0 in this case. The finite-difference equations associated with the 
other grid points in the problem are five-point formulas obtained by standard 
techniques [6]-[8]. 

Solution of the set of difference equations by the successive overrelaxation 
method [7] required 40 seconds of computation on the Burroughs B 5500 computer. 
The overrelaxation factor used was that which is optimum for the square containing 
the same total number of grid points. The magnitude of the error in the solution, 
as compared with the analytical solution, was less than 0.3 ‘A of the maximum 
potential (@ = 1000) over the whole region of interest. The error at grid points 
on the perturbed interface was as high as 1.1 % due to the local effects of the 
perturbation. However, since these perturbations alternate to either side of the 
original circular interface, the local errors alternate in sign; thus, their effects 
cancel, yielding essentially uniform error (< 0.3 %) over the region of interest. 

This sample problem was also solved by the following method. The region of 
interest was enclosed by an equipotential circle (@ G 0) in order to make the 
problem finite. The grid-point representation used the same grid in the region of 
interest and the same total number of grid points (approximately the same com- 
putation time) as the above example. The error by this method reached as high as 
20 % of the maximum potential over the same region of interest, emphasizing the 
remarkable accuracy of the method described herein [6]. 

6 3eca&of the clo%e rel&kship between the diffen%ce equation associated with a. point and 
the configuration of the neighboring grid points, the computer can be programmed to determine 
automatically, from the radius a alone, the difference equations which represent the exterior 
interface. 
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7. FINITE-DIFFERENCE REPRESENTATION IN T-Z COORDINATES 

For problems in x-y coordinates, the exterior problem has been represented as 
a pair of two-dimensional disks, coupled at their edges; appropriate difference 
equations have been derived by approximating Eq. (10). The same results would 
have been obtained if the exterior problem had been represented as a pair of disks 
of finite thickness, coupled at their cylindrical edges. Then the difference equations 
would have been obtained by approximating Eq. (9). Because the potential does 
not vary with the z dimension, the thickness of the disks would have canceled out 
of the difference equations. Since problems in r-z coordinates are essentially 
three-dimensional (with axial symmetry), appropriate finite-difference approxima- 
tions are derived most easily via such a three-dimensional approach. 

Let the half-disks of Fig. 4 be an r-z view of a pair of wedges of “thickness” 
dB(0 < A0 < 27~). Recall that the potential CD does not vary with 8. These wedges 
are connected at the exterior interface (p = a), on which is placed the charge 
distribution - (e/a) @(a, 19, 4) in order to match the boundary conditions. (Sec- 
tions 3 and 4). 

The wedges are perturbed at their interface in order to fit a square r-z grid of 
spacing h (see Fig. 9). Each wedge is represented by an identical network of grid 
points. Figure 9 shows the configuration of the front wedge about a point on the 
interface. (Viewed in the r-z half-plane, this configuration is identical with the front 
disk of the x-y case in Fig. 6). The point 0 represents both the polygonal box of 

PERTURBED EXTERIOR INTERFACE 

PORTION ISo) OF ORIGINAL 
INTERFACE ASSOCIATED 

POLYGONAL 

FIG. 9. Typical configuration of the front wedge about a point on the perturbed exterior 
interface. An identical rear wedge is distinguished by different notation for the grid points (SR, 
WR, etc.). 
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Fig. 9, which extends halfway to the neighboring grid points, and a similar box 
contained in the rear wedge. That portion of the perturbed interface which is 
associated with the point 0 is contained within this double polygonal box. 

The difference equation which determines the potential at the point 0 is an 
algebraic approximation to Eq. (9) on the double polygonal box associated with 
that point. Derivatives are estimated by potential differences, and are approxi- 
mately constant over each surface of the polygonal box. That portion of the flux 
[or the integral in Eq. (9)] which crosses the south surface S, of the box on the 
front wedge is approximated by 

= --E (r. - ;) AtIps L Qi,), (16) 

where Qs and Q. are the potentials at points S and 0, respectively, and (r. - +h) 
is the average radius of Ss . Adding together the flux crossing all external surfaces 
of the double polygonal box yields the following approximation to Eq. (9): 

-e(ro - pz) Ae(@,, - @o) - E(ro - pz) A&@SR - @o) 

-eO) AWk - Go) - 4r0) Ae(@, - Qo) 
- E(rO - 9~) oep, - cpo) = eI (17) 

Because of axial symmetry, no flux flows in the 0 direction; therefore, no terms 
corresponding to the r-z faces of the polygonal box appear in Eq. (17). 

Assume, for simplicity, that the charge density a(r, 0, z) is zero in the neigh- 
borhood of the interface. Then the charge QI contained in the double polygonal 
box is merely that which was added to the interface in order to match the boundary 
conditions. The charge density on the original exterior interface is -(e/a) @(a$, 4). 
Therefore, the total charge on that portion So of the original interface which is 
associated with the point 0 is 

QI = - f js, @(a, 4 4) r de d4 w 

Since @(a, 8, +) w Go over the surface So , 

(19) 
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where b is the length of the projection of So on the r-z half plane (see Fig. 9). 
Combining Eqs. (17) and (19), canceling -woA8, and rearranging yields 

( 1 - &j (@s - @cl) + (1 - &-) PSR - @o) 

+ (@w - @o> + PFVR - @o> + (1 - &j (@E - @Jo) = g @o , (20) 

where R. = ro/h, the radius of the point 0 measured in grid spaces. Note that 
a and b can also be measured in grid spaces, since their units cancel. Putting this 
approximation to Poisson’s equation for the neighborhood of the point 0 of 
Fig. 9 in the form 

t ‘5 - & + ;j @so = (1 - &j @, + (I - &j @SR 

+@w+@FvR+(l-+j@E 
0 

(21) 

allows comparison to the two-dimensional case, Eq. (14). This comparison demon- 
strates both the effect of the charge on the interface (i.e., the term b/u) and the 
effect of T-Z coordinates in general.‘j 

8. EXAMPLE WITH AXIAL SYMMETRY 

The potential distribution about a pair of point charges is well known [5]; the 
equipotentials are spheroidal as shown in Fig. 10. A pair of these equipotentials 
(in this case @ = 51000) can be considered as a pair of charged conductors 
which determine exactly the same exterior potential distribution. Because of 
symmetry in the configuration, the northeast quadrant of the problem is sufficient 
to define this potential distribution. 

Figure 11 shows the grid-point representation of the northeast quadrant (r-z 
coordinates). The constants selected for the problem are: the grid spacing h = 1 
unit; the radius of the exterior interface a = 20 units; E = 1; ~(r, z) = 0 (except 
on the fixed potential boundary and the exterior interface). The fixed potential 
boundary (@ = 1000) is treated in the same manner as in the two-dimensional 
example. 

At several points on the perturbed exterior interface the configuration is as in 
Fig. 9; the corresponding difference equation is Eq. (21). The difference equations 

6 Since b/a is positive, Eq. (21) preserves diagonal dominance. 
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I ANTI - SYMMETRY LINE 
I / 

r 

t Z 

k 6.5 UNITS -I 
W-10.7 UNITS --I 

FIG. 10. Spheroidal equipotentials about a pair of opposite point charges. The potential 
satisfies VW = 0. 

corresponding to other points on the exterior interface can be derived as in the 
previous section. On the other hand, after recognizing the relationship between 
the configuration of Fig. 9 and the weights on the potentials at the grid points 
[Eq. (20)], it is clear how to write directly the difference equation corresponding 
to a point by inspection of its neighboring grid-point configuration. For example, 
the difference equation corresponding to any point on the 45” segment of the 
perturbed interface (Fig. 11) is 

( 1 - -&-) (@s - @o) + (1 - &--) h? - @cd 

Each daerence equation which represents a point on the exterior interface 
requires knowledge of b, the length of the segment of the original interface asso- 
ciated with that point. For this problem it is assumed that each grid point represents 
an equal portion of the interface in each quadrant, b = 2~a/4(28) or b/a = 0.5607. 
The finite-difference equations associated with the other grid points in the problem 
are five-point formulas obtained by standard techniques [6], [9]. 

Solution of the set of difference equations by the successive over-relaxation 
method required 45 seconds of computation on the Burroughs B 5500. The error 
was essentially uniform over the region of interest, with a maximum magnitude of 
0.3 % of the maximum potential (@ = 1000). As in the two-dimensional example, 
local effects of the perturbation of the exterior interface resulted in an error as 
high as 0.6 % at points actually on the interface. Although the term b/a, which 
represents the effect of the charge distribution on the exterior interface, only 
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r 

t 2 

PERTURBED EXTERIOR 

ORIGINAL EXTERIOR 

ANTI -SYMMETRY LINE 
(Q=o) 

FIG. 11. Grid-point representation of northeast quadrant of Fig. 10. 

slightly affects the total coefficient on the potential (Go) at the point, it cannot be 
ignored; the above example was repeated while neglecting this charge on the inter- 
face, resulting in an error as high as 6 % in the region of interest. 

9. SUMMARY 

The mapping concept of Boothroyd et al. [3] has been modi6ed and used to 
convert the axially-symmetric exterior problem to an equivalent interior problem 
with the same region of interest. This new problem is suitable for computer 
solution by standard finite difference methods. 

That approximation to the exterior interface which is proposed herein provides 
accuracy in the region of interest which is adequate for most engineering problems. 
Yet, the approximation is simple enough to allow the computer to handle the 
“exterior part” of the problem with no user intervention. In addition, those 
properties of the difference equations which guarantee convergence of the standard 
relaxation methods of solution are preserved by this approach, 
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